Dusty gas with one fluid in smoothed particle hydrodynamics
نویسندگان
چکیده
In a companion paper we have shown how the equations describing gas and dust as two fluids coupled by a drag term can be re-formulated to describe the system as a single fluid mixture. Here we present a numerical implementation of the one-fluid dusty gas algorithm using Smoothed Particle Hydrodynamics (SPH). The algorithm preserves the conservation properties of the SPH formalism. In particular, the total gas and dust mass, momentum, angular momentum and energy are all exactly conserved. Shock viscosity and conductivity terms are generalised to handle the two-phase mixture accordingly. The algorithm is benchmarked against a comprehensive suit of problems: dustybox, dustywave, dustyshock and dustyoscill, each of them addressing different properties of the method. We compare the performance of the one-fluid algorithm to the standard two-fluid approach. The one-fluid algorithm is found to solve both of the fundamental limitations of the twofluid algorithm: it is no longer possible to concentrate dust below the resolution of the gas (they have the same resolution by definition), and the spatial resolution criterion h < csts, required in two-fluid codes to avoid over-damping of kinetic energy, is unnecessary. Implicit time stepping is straightforward. As a result, the algorithm is up to ten billion times more efficient for 3D simulations of small grains. Additional benefits include the use of half as many particles, a single kernel and fewer SPH interpolations. The only limitation is that it does not capture multi-streaming of dust in the limit of zero coupling, suggesting that in this case a hybrid approach may be required.
منابع مشابه
Incompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملInvestigating the Third Order Solitary Wave Generation Accuracy using Incompressible Smoothed Particle Hydrodynamics
This paper examines the generation and propagation of a Third order solitary water wave along the channel. First the Incompressible Smoothed Particle Hydrodynamics (ISPH) numerical method is described and the boundary condition handling method is presented. The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. The numerical results are compared wi...
متن کاملDusty gas with one fluid
In this paper, we show how the two-fluid equations describing the evolution of a dust and gas mixture can be re-formulated to describe a single fluid moving with the barycentric velocity of the mixture. This leads to evolution equations for the total density, momentum, the differential velocity between the dust and the gas phases and either the dust-to-gas ratio or the dust fraction. The equati...
متن کاملA fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics
We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This “diffusion approximation for dust” is valid wh...
متن کاملDusty gas with SPH — I. Algorithm and test suite
We present a new algorithm for simulating two-fluid gas and dust mixtures in Smoothed Particle Hydrodynamics (SPH), systematically addressing a number of key issues including the generalised SPH density estimate in multi-fluid systems, the consistent treatment of variable smoothing length terms, finite particle size, time step stability, thermal coupling terms and the choice of kernel and smoot...
متن کامل